(0) Obligation:

Clauses:

div(X, 0, Z, R) :- ','(!, fail).
div(0, Y, Z, R) :- ','(!, ','(=(Z, 0), =(R, 0))).
div(X, Y, s(Z), R) :- ','(minus(X, Y, U), ','(!, div(U, Y, Z, R))).
div(X, Y, 0, X).
minus(X, 0, X).
minus(s(X), s(Y), Z) :- minus(X, Y, Z).

Query: div(g,g,a,a)

(1) PrologToPrologProblemTransformerProof (SOUND transformation)

Built Prolog problem from termination graph ICLP10.

(2) Obligation:

Clauses:

minusA(T50, 0, T50).
minusA(s(T55), s(T56), X63) :- minusA(T55, T56, X63).
divB(0, T14, 0, 0).
divB(s(T39), s(T40), s(T28), T29) :- minusA(T39, T40, X42).
divB(s(T39), s(T40), s(T28), T29) :- ','(minusA(T39, T40, T43), divB(T43, s(T40), T28, T29)).
divB(T64, T65, 0, T64).
divB(T68, T69, 0, T68).

Query: divB(g,g,a,a)

(3) PrologToPiTRSProof (SOUND transformation)

We use the technique of [TOCL09]. With regard to the inferred argument filtering the predicates were used in the following modes:
divB_in: (b,b,f,f)
minusA_in: (b,b,f)
Transforming Prolog into the following Term Rewriting System:
Pi-finite rewrite system:
The TRS R consists of the following rules:

divB_in_ggaa(0, T14, 0, 0) → divB_out_ggaa(0, T14, 0, 0)
divB_in_ggaa(s(T39), s(T40), s(T28), T29) → U2_ggaa(T39, T40, T28, T29, minusA_in_gga(T39, T40, X42))
minusA_in_gga(T50, 0, T50) → minusA_out_gga(T50, 0, T50)
minusA_in_gga(s(T55), s(T56), X63) → U1_gga(T55, T56, X63, minusA_in_gga(T55, T56, X63))
U1_gga(T55, T56, X63, minusA_out_gga(T55, T56, X63)) → minusA_out_gga(s(T55), s(T56), X63)
U2_ggaa(T39, T40, T28, T29, minusA_out_gga(T39, T40, X42)) → divB_out_ggaa(s(T39), s(T40), s(T28), T29)
divB_in_ggaa(s(T39), s(T40), s(T28), T29) → U3_ggaa(T39, T40, T28, T29, minusA_in_gga(T39, T40, T43))
U3_ggaa(T39, T40, T28, T29, minusA_out_gga(T39, T40, T43)) → U4_ggaa(T39, T40, T28, T29, divB_in_ggaa(T43, s(T40), T28, T29))
divB_in_ggaa(T64, T65, 0, T64) → divB_out_ggaa(T64, T65, 0, T64)
U4_ggaa(T39, T40, T28, T29, divB_out_ggaa(T43, s(T40), T28, T29)) → divB_out_ggaa(s(T39), s(T40), s(T28), T29)

The argument filtering Pi contains the following mapping:
divB_in_ggaa(x1, x2, x3, x4)  =  divB_in_ggaa(x1, x2)
0  =  0
divB_out_ggaa(x1, x2, x3, x4)  =  divB_out_ggaa
s(x1)  =  s(x1)
U2_ggaa(x1, x2, x3, x4, x5)  =  U2_ggaa(x5)
minusA_in_gga(x1, x2, x3)  =  minusA_in_gga(x1, x2)
minusA_out_gga(x1, x2, x3)  =  minusA_out_gga(x3)
U1_gga(x1, x2, x3, x4)  =  U1_gga(x4)
U3_ggaa(x1, x2, x3, x4, x5)  =  U3_ggaa(x2, x5)
U4_ggaa(x1, x2, x3, x4, x5)  =  U4_ggaa(x5)

Infinitary Constructor Rewriting Termination of PiTRS implies Termination of Prolog

(4) Obligation:

Pi-finite rewrite system:
The TRS R consists of the following rules:

divB_in_ggaa(0, T14, 0, 0) → divB_out_ggaa(0, T14, 0, 0)
divB_in_ggaa(s(T39), s(T40), s(T28), T29) → U2_ggaa(T39, T40, T28, T29, minusA_in_gga(T39, T40, X42))
minusA_in_gga(T50, 0, T50) → minusA_out_gga(T50, 0, T50)
minusA_in_gga(s(T55), s(T56), X63) → U1_gga(T55, T56, X63, minusA_in_gga(T55, T56, X63))
U1_gga(T55, T56, X63, minusA_out_gga(T55, T56, X63)) → minusA_out_gga(s(T55), s(T56), X63)
U2_ggaa(T39, T40, T28, T29, minusA_out_gga(T39, T40, X42)) → divB_out_ggaa(s(T39), s(T40), s(T28), T29)
divB_in_ggaa(s(T39), s(T40), s(T28), T29) → U3_ggaa(T39, T40, T28, T29, minusA_in_gga(T39, T40, T43))
U3_ggaa(T39, T40, T28, T29, minusA_out_gga(T39, T40, T43)) → U4_ggaa(T39, T40, T28, T29, divB_in_ggaa(T43, s(T40), T28, T29))
divB_in_ggaa(T64, T65, 0, T64) → divB_out_ggaa(T64, T65, 0, T64)
U4_ggaa(T39, T40, T28, T29, divB_out_ggaa(T43, s(T40), T28, T29)) → divB_out_ggaa(s(T39), s(T40), s(T28), T29)

The argument filtering Pi contains the following mapping:
divB_in_ggaa(x1, x2, x3, x4)  =  divB_in_ggaa(x1, x2)
0  =  0
divB_out_ggaa(x1, x2, x3, x4)  =  divB_out_ggaa
s(x1)  =  s(x1)
U2_ggaa(x1, x2, x3, x4, x5)  =  U2_ggaa(x5)
minusA_in_gga(x1, x2, x3)  =  minusA_in_gga(x1, x2)
minusA_out_gga(x1, x2, x3)  =  minusA_out_gga(x3)
U1_gga(x1, x2, x3, x4)  =  U1_gga(x4)
U3_ggaa(x1, x2, x3, x4, x5)  =  U3_ggaa(x2, x5)
U4_ggaa(x1, x2, x3, x4, x5)  =  U4_ggaa(x5)

(5) DependencyPairsProof (EQUIVALENT transformation)

Using Dependency Pairs [AG00,LOPSTR] we result in the following initial DP problem:
Pi DP problem:
The TRS P consists of the following rules:

DIVB_IN_GGAA(s(T39), s(T40), s(T28), T29) → U2_GGAA(T39, T40, T28, T29, minusA_in_gga(T39, T40, X42))
DIVB_IN_GGAA(s(T39), s(T40), s(T28), T29) → MINUSA_IN_GGA(T39, T40, X42)
MINUSA_IN_GGA(s(T55), s(T56), X63) → U1_GGA(T55, T56, X63, minusA_in_gga(T55, T56, X63))
MINUSA_IN_GGA(s(T55), s(T56), X63) → MINUSA_IN_GGA(T55, T56, X63)
DIVB_IN_GGAA(s(T39), s(T40), s(T28), T29) → U3_GGAA(T39, T40, T28, T29, minusA_in_gga(T39, T40, T43))
U3_GGAA(T39, T40, T28, T29, minusA_out_gga(T39, T40, T43)) → U4_GGAA(T39, T40, T28, T29, divB_in_ggaa(T43, s(T40), T28, T29))
U3_GGAA(T39, T40, T28, T29, minusA_out_gga(T39, T40, T43)) → DIVB_IN_GGAA(T43, s(T40), T28, T29)

The TRS R consists of the following rules:

divB_in_ggaa(0, T14, 0, 0) → divB_out_ggaa(0, T14, 0, 0)
divB_in_ggaa(s(T39), s(T40), s(T28), T29) → U2_ggaa(T39, T40, T28, T29, minusA_in_gga(T39, T40, X42))
minusA_in_gga(T50, 0, T50) → minusA_out_gga(T50, 0, T50)
minusA_in_gga(s(T55), s(T56), X63) → U1_gga(T55, T56, X63, minusA_in_gga(T55, T56, X63))
U1_gga(T55, T56, X63, minusA_out_gga(T55, T56, X63)) → minusA_out_gga(s(T55), s(T56), X63)
U2_ggaa(T39, T40, T28, T29, minusA_out_gga(T39, T40, X42)) → divB_out_ggaa(s(T39), s(T40), s(T28), T29)
divB_in_ggaa(s(T39), s(T40), s(T28), T29) → U3_ggaa(T39, T40, T28, T29, minusA_in_gga(T39, T40, T43))
U3_ggaa(T39, T40, T28, T29, minusA_out_gga(T39, T40, T43)) → U4_ggaa(T39, T40, T28, T29, divB_in_ggaa(T43, s(T40), T28, T29))
divB_in_ggaa(T64, T65, 0, T64) → divB_out_ggaa(T64, T65, 0, T64)
U4_ggaa(T39, T40, T28, T29, divB_out_ggaa(T43, s(T40), T28, T29)) → divB_out_ggaa(s(T39), s(T40), s(T28), T29)

The argument filtering Pi contains the following mapping:
divB_in_ggaa(x1, x2, x3, x4)  =  divB_in_ggaa(x1, x2)
0  =  0
divB_out_ggaa(x1, x2, x3, x4)  =  divB_out_ggaa
s(x1)  =  s(x1)
U2_ggaa(x1, x2, x3, x4, x5)  =  U2_ggaa(x5)
minusA_in_gga(x1, x2, x3)  =  minusA_in_gga(x1, x2)
minusA_out_gga(x1, x2, x3)  =  minusA_out_gga(x3)
U1_gga(x1, x2, x3, x4)  =  U1_gga(x4)
U3_ggaa(x1, x2, x3, x4, x5)  =  U3_ggaa(x2, x5)
U4_ggaa(x1, x2, x3, x4, x5)  =  U4_ggaa(x5)
DIVB_IN_GGAA(x1, x2, x3, x4)  =  DIVB_IN_GGAA(x1, x2)
U2_GGAA(x1, x2, x3, x4, x5)  =  U2_GGAA(x5)
MINUSA_IN_GGA(x1, x2, x3)  =  MINUSA_IN_GGA(x1, x2)
U1_GGA(x1, x2, x3, x4)  =  U1_GGA(x4)
U3_GGAA(x1, x2, x3, x4, x5)  =  U3_GGAA(x2, x5)
U4_GGAA(x1, x2, x3, x4, x5)  =  U4_GGAA(x5)

We have to consider all (P,R,Pi)-chains

(6) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

DIVB_IN_GGAA(s(T39), s(T40), s(T28), T29) → U2_GGAA(T39, T40, T28, T29, minusA_in_gga(T39, T40, X42))
DIVB_IN_GGAA(s(T39), s(T40), s(T28), T29) → MINUSA_IN_GGA(T39, T40, X42)
MINUSA_IN_GGA(s(T55), s(T56), X63) → U1_GGA(T55, T56, X63, minusA_in_gga(T55, T56, X63))
MINUSA_IN_GGA(s(T55), s(T56), X63) → MINUSA_IN_GGA(T55, T56, X63)
DIVB_IN_GGAA(s(T39), s(T40), s(T28), T29) → U3_GGAA(T39, T40, T28, T29, minusA_in_gga(T39, T40, T43))
U3_GGAA(T39, T40, T28, T29, minusA_out_gga(T39, T40, T43)) → U4_GGAA(T39, T40, T28, T29, divB_in_ggaa(T43, s(T40), T28, T29))
U3_GGAA(T39, T40, T28, T29, minusA_out_gga(T39, T40, T43)) → DIVB_IN_GGAA(T43, s(T40), T28, T29)

The TRS R consists of the following rules:

divB_in_ggaa(0, T14, 0, 0) → divB_out_ggaa(0, T14, 0, 0)
divB_in_ggaa(s(T39), s(T40), s(T28), T29) → U2_ggaa(T39, T40, T28, T29, minusA_in_gga(T39, T40, X42))
minusA_in_gga(T50, 0, T50) → minusA_out_gga(T50, 0, T50)
minusA_in_gga(s(T55), s(T56), X63) → U1_gga(T55, T56, X63, minusA_in_gga(T55, T56, X63))
U1_gga(T55, T56, X63, minusA_out_gga(T55, T56, X63)) → minusA_out_gga(s(T55), s(T56), X63)
U2_ggaa(T39, T40, T28, T29, minusA_out_gga(T39, T40, X42)) → divB_out_ggaa(s(T39), s(T40), s(T28), T29)
divB_in_ggaa(s(T39), s(T40), s(T28), T29) → U3_ggaa(T39, T40, T28, T29, minusA_in_gga(T39, T40, T43))
U3_ggaa(T39, T40, T28, T29, minusA_out_gga(T39, T40, T43)) → U4_ggaa(T39, T40, T28, T29, divB_in_ggaa(T43, s(T40), T28, T29))
divB_in_ggaa(T64, T65, 0, T64) → divB_out_ggaa(T64, T65, 0, T64)
U4_ggaa(T39, T40, T28, T29, divB_out_ggaa(T43, s(T40), T28, T29)) → divB_out_ggaa(s(T39), s(T40), s(T28), T29)

The argument filtering Pi contains the following mapping:
divB_in_ggaa(x1, x2, x3, x4)  =  divB_in_ggaa(x1, x2)
0  =  0
divB_out_ggaa(x1, x2, x3, x4)  =  divB_out_ggaa
s(x1)  =  s(x1)
U2_ggaa(x1, x2, x3, x4, x5)  =  U2_ggaa(x5)
minusA_in_gga(x1, x2, x3)  =  minusA_in_gga(x1, x2)
minusA_out_gga(x1, x2, x3)  =  minusA_out_gga(x3)
U1_gga(x1, x2, x3, x4)  =  U1_gga(x4)
U3_ggaa(x1, x2, x3, x4, x5)  =  U3_ggaa(x2, x5)
U4_ggaa(x1, x2, x3, x4, x5)  =  U4_ggaa(x5)
DIVB_IN_GGAA(x1, x2, x3, x4)  =  DIVB_IN_GGAA(x1, x2)
U2_GGAA(x1, x2, x3, x4, x5)  =  U2_GGAA(x5)
MINUSA_IN_GGA(x1, x2, x3)  =  MINUSA_IN_GGA(x1, x2)
U1_GGA(x1, x2, x3, x4)  =  U1_GGA(x4)
U3_GGAA(x1, x2, x3, x4, x5)  =  U3_GGAA(x2, x5)
U4_GGAA(x1, x2, x3, x4, x5)  =  U4_GGAA(x5)

We have to consider all (P,R,Pi)-chains

(7) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LOPSTR] contains 2 SCCs with 4 less nodes.

(8) Complex Obligation (AND)

(9) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

MINUSA_IN_GGA(s(T55), s(T56), X63) → MINUSA_IN_GGA(T55, T56, X63)

The TRS R consists of the following rules:

divB_in_ggaa(0, T14, 0, 0) → divB_out_ggaa(0, T14, 0, 0)
divB_in_ggaa(s(T39), s(T40), s(T28), T29) → U2_ggaa(T39, T40, T28, T29, minusA_in_gga(T39, T40, X42))
minusA_in_gga(T50, 0, T50) → minusA_out_gga(T50, 0, T50)
minusA_in_gga(s(T55), s(T56), X63) → U1_gga(T55, T56, X63, minusA_in_gga(T55, T56, X63))
U1_gga(T55, T56, X63, minusA_out_gga(T55, T56, X63)) → minusA_out_gga(s(T55), s(T56), X63)
U2_ggaa(T39, T40, T28, T29, minusA_out_gga(T39, T40, X42)) → divB_out_ggaa(s(T39), s(T40), s(T28), T29)
divB_in_ggaa(s(T39), s(T40), s(T28), T29) → U3_ggaa(T39, T40, T28, T29, minusA_in_gga(T39, T40, T43))
U3_ggaa(T39, T40, T28, T29, minusA_out_gga(T39, T40, T43)) → U4_ggaa(T39, T40, T28, T29, divB_in_ggaa(T43, s(T40), T28, T29))
divB_in_ggaa(T64, T65, 0, T64) → divB_out_ggaa(T64, T65, 0, T64)
U4_ggaa(T39, T40, T28, T29, divB_out_ggaa(T43, s(T40), T28, T29)) → divB_out_ggaa(s(T39), s(T40), s(T28), T29)

The argument filtering Pi contains the following mapping:
divB_in_ggaa(x1, x2, x3, x4)  =  divB_in_ggaa(x1, x2)
0  =  0
divB_out_ggaa(x1, x2, x3, x4)  =  divB_out_ggaa
s(x1)  =  s(x1)
U2_ggaa(x1, x2, x3, x4, x5)  =  U2_ggaa(x5)
minusA_in_gga(x1, x2, x3)  =  minusA_in_gga(x1, x2)
minusA_out_gga(x1, x2, x3)  =  minusA_out_gga(x3)
U1_gga(x1, x2, x3, x4)  =  U1_gga(x4)
U3_ggaa(x1, x2, x3, x4, x5)  =  U3_ggaa(x2, x5)
U4_ggaa(x1, x2, x3, x4, x5)  =  U4_ggaa(x5)
MINUSA_IN_GGA(x1, x2, x3)  =  MINUSA_IN_GGA(x1, x2)

We have to consider all (P,R,Pi)-chains

(10) UsableRulesProof (EQUIVALENT transformation)

For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.

(11) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

MINUSA_IN_GGA(s(T55), s(T56), X63) → MINUSA_IN_GGA(T55, T56, X63)

R is empty.
The argument filtering Pi contains the following mapping:
s(x1)  =  s(x1)
MINUSA_IN_GGA(x1, x2, x3)  =  MINUSA_IN_GGA(x1, x2)

We have to consider all (P,R,Pi)-chains

(12) PiDPToQDPProof (SOUND transformation)

Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.

(13) Obligation:

Q DP problem:
The TRS P consists of the following rules:

MINUSA_IN_GGA(s(T55), s(T56)) → MINUSA_IN_GGA(T55, T56)

R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.

(14) QDPSizeChangeProof (EQUIVALENT transformation)

By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:

  • MINUSA_IN_GGA(s(T55), s(T56)) → MINUSA_IN_GGA(T55, T56)
    The graph contains the following edges 1 > 1, 2 > 2

(15) YES

(16) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

DIVB_IN_GGAA(s(T39), s(T40), s(T28), T29) → U3_GGAA(T39, T40, T28, T29, minusA_in_gga(T39, T40, T43))
U3_GGAA(T39, T40, T28, T29, minusA_out_gga(T39, T40, T43)) → DIVB_IN_GGAA(T43, s(T40), T28, T29)

The TRS R consists of the following rules:

divB_in_ggaa(0, T14, 0, 0) → divB_out_ggaa(0, T14, 0, 0)
divB_in_ggaa(s(T39), s(T40), s(T28), T29) → U2_ggaa(T39, T40, T28, T29, minusA_in_gga(T39, T40, X42))
minusA_in_gga(T50, 0, T50) → minusA_out_gga(T50, 0, T50)
minusA_in_gga(s(T55), s(T56), X63) → U1_gga(T55, T56, X63, minusA_in_gga(T55, T56, X63))
U1_gga(T55, T56, X63, minusA_out_gga(T55, T56, X63)) → minusA_out_gga(s(T55), s(T56), X63)
U2_ggaa(T39, T40, T28, T29, minusA_out_gga(T39, T40, X42)) → divB_out_ggaa(s(T39), s(T40), s(T28), T29)
divB_in_ggaa(s(T39), s(T40), s(T28), T29) → U3_ggaa(T39, T40, T28, T29, minusA_in_gga(T39, T40, T43))
U3_ggaa(T39, T40, T28, T29, minusA_out_gga(T39, T40, T43)) → U4_ggaa(T39, T40, T28, T29, divB_in_ggaa(T43, s(T40), T28, T29))
divB_in_ggaa(T64, T65, 0, T64) → divB_out_ggaa(T64, T65, 0, T64)
U4_ggaa(T39, T40, T28, T29, divB_out_ggaa(T43, s(T40), T28, T29)) → divB_out_ggaa(s(T39), s(T40), s(T28), T29)

The argument filtering Pi contains the following mapping:
divB_in_ggaa(x1, x2, x3, x4)  =  divB_in_ggaa(x1, x2)
0  =  0
divB_out_ggaa(x1, x2, x3, x4)  =  divB_out_ggaa
s(x1)  =  s(x1)
U2_ggaa(x1, x2, x3, x4, x5)  =  U2_ggaa(x5)
minusA_in_gga(x1, x2, x3)  =  minusA_in_gga(x1, x2)
minusA_out_gga(x1, x2, x3)  =  minusA_out_gga(x3)
U1_gga(x1, x2, x3, x4)  =  U1_gga(x4)
U3_ggaa(x1, x2, x3, x4, x5)  =  U3_ggaa(x2, x5)
U4_ggaa(x1, x2, x3, x4, x5)  =  U4_ggaa(x5)
DIVB_IN_GGAA(x1, x2, x3, x4)  =  DIVB_IN_GGAA(x1, x2)
U3_GGAA(x1, x2, x3, x4, x5)  =  U3_GGAA(x2, x5)

We have to consider all (P,R,Pi)-chains

(17) UsableRulesProof (EQUIVALENT transformation)

For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.

(18) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

DIVB_IN_GGAA(s(T39), s(T40), s(T28), T29) → U3_GGAA(T39, T40, T28, T29, minusA_in_gga(T39, T40, T43))
U3_GGAA(T39, T40, T28, T29, minusA_out_gga(T39, T40, T43)) → DIVB_IN_GGAA(T43, s(T40), T28, T29)

The TRS R consists of the following rules:

minusA_in_gga(T50, 0, T50) → minusA_out_gga(T50, 0, T50)
minusA_in_gga(s(T55), s(T56), X63) → U1_gga(T55, T56, X63, minusA_in_gga(T55, T56, X63))
U1_gga(T55, T56, X63, minusA_out_gga(T55, T56, X63)) → minusA_out_gga(s(T55), s(T56), X63)

The argument filtering Pi contains the following mapping:
0  =  0
s(x1)  =  s(x1)
minusA_in_gga(x1, x2, x3)  =  minusA_in_gga(x1, x2)
minusA_out_gga(x1, x2, x3)  =  minusA_out_gga(x3)
U1_gga(x1, x2, x3, x4)  =  U1_gga(x4)
DIVB_IN_GGAA(x1, x2, x3, x4)  =  DIVB_IN_GGAA(x1, x2)
U3_GGAA(x1, x2, x3, x4, x5)  =  U3_GGAA(x2, x5)

We have to consider all (P,R,Pi)-chains

(19) PiDPToQDPProof (SOUND transformation)

Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.

(20) Obligation:

Q DP problem:
The TRS P consists of the following rules:

DIVB_IN_GGAA(s(T39), s(T40)) → U3_GGAA(T40, minusA_in_gga(T39, T40))
U3_GGAA(T40, minusA_out_gga(T43)) → DIVB_IN_GGAA(T43, s(T40))

The TRS R consists of the following rules:

minusA_in_gga(T50, 0) → minusA_out_gga(T50)
minusA_in_gga(s(T55), s(T56)) → U1_gga(minusA_in_gga(T55, T56))
U1_gga(minusA_out_gga(X63)) → minusA_out_gga(X63)

The set Q consists of the following terms:

minusA_in_gga(x0, x1)
U1_gga(x0)

We have to consider all (P,Q,R)-chains.

(21) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04,JAR06].


The following pairs can be oriented strictly and are deleted.


DIVB_IN_GGAA(s(T39), s(T40)) → U3_GGAA(T40, minusA_in_gga(T39, T40))
The remaining pairs can at least be oriented weakly.
Used ordering: Polynomial interpretation [POLO]:

POL(0) = 0   
POL(DIVB_IN_GGAA(x1, x2)) = x1   
POL(U1_gga(x1)) = x1   
POL(U3_GGAA(x1, x2)) = x2   
POL(minusA_in_gga(x1, x2)) = x1   
POL(minusA_out_gga(x1)) = x1   
POL(s(x1)) = 1 + x1   

The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented:

minusA_in_gga(T50, 0) → minusA_out_gga(T50)
minusA_in_gga(s(T55), s(T56)) → U1_gga(minusA_in_gga(T55, T56))
U1_gga(minusA_out_gga(X63)) → minusA_out_gga(X63)

(22) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U3_GGAA(T40, minusA_out_gga(T43)) → DIVB_IN_GGAA(T43, s(T40))

The TRS R consists of the following rules:

minusA_in_gga(T50, 0) → minusA_out_gga(T50)
minusA_in_gga(s(T55), s(T56)) → U1_gga(minusA_in_gga(T55, T56))
U1_gga(minusA_out_gga(X63)) → minusA_out_gga(X63)

The set Q consists of the following terms:

minusA_in_gga(x0, x1)
U1_gga(x0)

We have to consider all (P,Q,R)-chains.

(23) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 0 SCCs with 1 less node.

(24) TRUE